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Many growing plant cells undergo rapid axial elongation with negligible radial
expansion. Growth is driven by high internal turgor pressure causing viscous stretching
of the cell wall, with embedded cellulose microfibrils providing the wall with strongly
anisotropic properties. We present a theoretical model of a growing cell, representing
the primary cell wall as a thin axisymmetric fibre-reinforced viscous sheet supported
between rigid end plates. Asymptotic reduction of the governing equations, under
simple sets of assumptions about the fibre and wall properties, yields variants of
the traditional Lockhart equation, which relates the axial cell growth rate to the
internal pressure. The model provides insights into the geometric and biomechanical
parameters underlying bulk quantities such as wall extensibility, and shows how
either dynamical changes in wall material properties or passive fibre reorientation
may suppress cell elongation.

1. Introduction
Cell growth is a fundamental feature of plant biology (Taiz & Zeiger 2002),

with differential growth underlying essential processes such as gravitropism and
morphogenesis. Broadly speaking, growing plant cells fall into two categories: cells
which exhibit tip growth (such as root hairs or pollen tubes, where wall expansion
is localized to the tip of the cell; see the review by Geitmann 2006); and those
which exhibit diffuse growth (where growth occurs over the entire cell length). The
primary root of the model species Arabidopsis thaliana (Scheres, Benfey & Dolan
2002) provides a canonical example of diffuse growth. The portion of the root in
which the majority of growth occurs can be divided into two zones: the meristem,
where cells are created, divide and differentiate, and the elongation zone, where cells
undergo rapid anisotropic expansion, increasing in length by 30-fold at essentially
constant radius (see figure 1). Cell growth within the elongation zone is the main
driver of expansion within the root, pushing its tip forward into the surrounding
environment. Relative to the advancing tip, it takes a cell around 100 h to move
350 µm through the meristem to the elongation zone, but only 6 h to traverse the
1000 µm elongation zone. The internodal cells of aquatic algae such as Chara (Proseus,
Zhu & Boyer 2000) or Nitella (Green 1968) also display diffuse expansion. These
large cells combine into branching structures to form multicellular algae, but will also
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Figure 1. The growing root of Arabidopsis thaliana showing the meristem and elongation zone
and illustrating the significant anisotropic expansion of the cells. Image courtesy of Susana
Ubeda-Tomás, Centre for Plant Integrative Biology, University of Nottingham.

expand when isolated from other cells, making them another popular experimental
system to examine diffuse expansion (Probine & Preston 1961, 1962; Probine 1963;
Proseus, Ortega & Boyer 1999).

Plant cells are pressurized structures surrounded by a tough cell wall, a complex
material capable of maintaining remarkably high turgor pressures of up to several
megapascals (tens of bar) (Tomos 2000) while allowing significant cell expansion.
Cells are tightly adhered to their neighbours, requiring the growth of individual cells
in a whole organ to be highly regulated (Lindenmayer et al. 1996). The primary wall
of a root cell consists of oriented cellulose microfibrils (CMF), cross-linked through a
network of hemicellulose tethers, embedded within a pectin ground matrix. Hoop-like
orientation of CMF in cylindrical cells creates strong anisotropy in the cell wall
properties, promoting growth axially and restricting growth radially (see Somerville
et al. 2004 for a review).

Cells in the root expansion zone grow through a process of stress relaxation: the
internal turgor pressure, which is regulated on the order of seconds by the cell’s
osmotic potential (Zhu & Steudle 1991) and is therefore essentially constant on the
time scale of growth, creates a tension within the walls which causes irreversible
viscous deformation (creep) of the wall. The degree of creep is controlled by the
cell wall mechanical properties, which in turn are altered by enzyme activity, e.g.
by expansins (McQueen-Mason & Cosgrove 1995) that disconnect cross-linkers from
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CMF, xyloglucan endotransglycosylases (van Sandt et al. 2007) that cleave cross-
linkers and pectin methyl esterases (Jarvis 1984; Derbyshire, McCann & Roberts
2007b) that soften the ground matrix (see Cosgrove 2005 for a recent review). Enzyme
activity is regulated by changes in hormone concentrations (Dolan & Davies 2004).
To retain the integrity of the growing wall, new material is continually deposited on
the inner face (Richmond, Metraux & Taiz 1980). A summary of recent experimental
work on the mechanics of growth is given in Schopfer (2006), while reviews of
the regulation of plant cell expansion are given in Taiz (1984), Baskin (2005) and
Thompson (2005).

Many theoretical models of diffuse plant cell growth are built on the widely used
model of Lockhart (1965), which treats the cell as a linear viscoplastic compartment
under osmotic control. The Lockhart model consists of coupled equations for water
uptake, controlled by the cell’s osmotic potential, and cell growth, which is driven by
this water uptake. When water availability is not rate limiting, the osmotic potential
quickly adjusts to maintain a constant turgor pressure within the growing cell and so
only the cell growth equation need be considered. For a hollow circular cylindrical
cell of radius R∗ and wall thickness h∗, the internal pressure P ∗ acting on the cell end
plates induces an axial tension T ∗ =P ∗R∗/2h∗ within the walls. This tension causes
irreversible growth of the cell wall via a Bingham-type law

1

l∗
dl∗

dt∗ = Φ∗(T ∗ − Y ∗) (1.1)

= Φ∗
(

P ∗R∗

2h∗ − Y ∗
)

, (1.2)

when T ∗ >Y ∗, where l∗(t∗) is the length of the cell at time t∗, Φ∗ is the extensibility
(dimensionally equivalent to an inverse viscosity) and Y ∗ is a yield stress. Within the
literature, the extensibility and yield are often scaled to remove the geometric factors,
leading to

1

l∗
dl∗

dt∗ = Φ
∗
(P ∗ − Y

∗
) for P ∗ > Y

∗
. (1.3)

This model has been extended to include elastic effects when T ∗ <Y ∗ (Ortega 1985).
Equation (1.2) is also often used to model the growth of cell walls in multicellular
systems (Chavarria-Krauser, Jager & Schurr 2005). Some work has been undertaken
to express Φ∗ and Y ∗ in terms of the molecular components of the cell wall (Passioura
& Fry 1992; Veytsman & Cosgrove 1998), in particular considering the bonds between
the CMF and hemicellulose, although these models neglect the effect of the pectin
matrix within which the fibres are embedded.

The aim of the present paper is to develop a theoretical model for a growing plant
cell that is firmly based on mechanical principles, that can in principle be integrated
with detailed models of enzyme and hormone action and that underpins Lockhart’s
macroscopic cell-growth equation (1.2). The cell wall material will be approximated
as a thin sheet of viscous fluid, ignoring elastic effects that might operate over shorter
time scales and assuming the wall is permanently yielded, but accounting carefully for
the anisotropic stresses arising from the reinforcement of the wall by CMF. We wish
to gain insight into the fluid-mechanical factors contributing to the wall’s effective
extensibility, and to understand the conditions under which simple linear relationship
(1.2) may or may not hold.

There is considerable debate within the plant science community over the
arrangement of CMF in the cell wall. It is well established that the orientation
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of the CMF determines the mechanical anisotropy of the wall (Suslov & Verbelen
2006), however how this orientation is controlled is less clear. The orientation of
newly deposited CMF may be determined by that of cortical microtubules, however
some recent evidence contradicts this view (Baskin 2001; Lloyd & Chan 2004; Smith
& Oppenheimer 2005). In turn, the microtubule angle can be affected by global cell
properties, for example aligning with the principle stress directions (Hamant et al.
2008). Similarly there is evidence both supporting and refuting the idea that CMF
are passively reorientated as the wall stretches (Kerstens & Verbelen 2003; Marga
et al. 2005). The traditional multinet theory that CMF are laid down transversely on
the inner face of the cell wall, and passively reorientate, becoming more longitudinal
towards the outer face of the wall (Green 1960; Gertel & Green 1977) is supported
by recent experimental evidence (Anderson et al. 2010). In the absence of a definitive
view on this issue, we will make the simple assumption that the fibres passively
reorientate as the wall elongates. Likewise, there is debate about the degree of cell
wall deposition during growth (Derbyshire et al. 2007a); for simplicity we will assume
the wall to have constant thickness during growth, and that new fibres are deposited
at the angle of the current wall configuration, assumptions that yield a useful leading-
order approximation. We also briefly treat the case in which fibres are laid down at
a fixed orientation at the inner wall, so that the fibre orientation must be averaged
across the cell wall in order to describe the wall’s effective mechanical properties.

Bruce (2003) provides a comprehensive review of mathematical modelling applied
to the mechanical behaviour of plant systems at the cellular to tissue scale. Most
previous plant wall models address the short-term elastic properties of the material,
in contrast to the longer-term viscous response of individual growing cells; however it
should be recognized that slow differential growth can lead to residual elastic stresses
in multicellular tissues (Goriely et al. 2008). The elastic models increase in complexity
from linear isotropic (Pitt & Davis 1984) and transversely isotropic (Cowdrey &
Preston 1966; Sellen 1983) to nonlinear models that either neglect wall anisotropy
(Davies, Hiller & Bruce 1998) or incorporate it through an additive decomposition
of the strain energy with a matrix term and a fibre term (Hettiaratchi & O’Callaghan
1978; Chaplain 1993). The first three models mentioned do not deal with growth but
are concerned with inferring elastic properties from experimental data (Cowdrey &
Preston 1966; Davies et al. 1998) or modelling the tissue-scale composite behaviour of
multiple pressurized cells (Pitt & Davis 1984). Sellen’s (1983) model of a transversely
isotropic elastic cylinder deformed by an internal pressure could give a model for
growth if the material properties were to vary in time, leading to time-dependent
expansion. In contrast, Hettiaratchi & O’Callaghan (1978) and Chaplain (1993) both
calculate steady-state pressure–volume curves, assuming (in line with the prevailing
theory at the time) that cell growth is achieved through increases in turgor pressure,
a theory now discredited. Among models which treat the plant cell wall as a viscous
material is the anisotropic–viscoplastic model for tip growth derived by Dumais et al.
(2006), which includes the effects of the mechanical anisotropy of the wall material
as well as the observed yield.

The Dumais et al. (2006) model for tip growth has similarities in form with
our fluid-mechanical model of diffuse growth, however the wall in each case has
contrasting properties and hence the constitutive laws are significantly different. In
both cases transverse isotropy is displayed, however the orientation of the preferred
material direction differs. At the dome of tip-growing cells, fibres lie randomly in
the plane of the wall, so that the in-plane material properties are different from
those normal to the wall. In contrast, in our model of a diffusely growing cell we
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assume fibres are orientated in one preferred direction within the plane of the wall,
so that material properties in the fibre direction differ from those in the orthogonal
plane. Accordingly we treat the cell wall as a fibre-reinforced composite, following
approaches for nematic liquid crystals (Ben Amar & Cummings 2001), textile fibre
composites (Lee & Ockendon 2005) and the extensional flow of collagen gels (Green
& Friedman 2008). We use a linear constitutive relation for a transversely isotropic
material with a single preferred direction (representing the fibre direction), exploiting
formulations identified by Ericksen (1960) and Spencer (1972); given the limited
mechanical and structural data for the primary plant cell wall in the Arabidopsis
root, we choose here not to implement the full nonlinear approach that has been
developed for viscoelastic and viscoplastic fibre-reinforced materials by Holzapfel,
Gasser & Ogden (2000) and others in other biomechanical applications. While Green
& Friedman (2008) considered a thin planar fluid layer, we model the plant cell as an
axisymmetric structure with a curved free film between rigid end plates, extending the
framework derived by van de Fliert, Howell & Ockendon (1995) (referred to hereafter
as VHO) for the pressure-driven flow of a thin-walled fluid sheet in the context
of glass blowing. Our model therefore provides a generalization of the traditional
Trouton description of extensional flows to account for an evolving microstructure.
In § 2 we state the governing equations for the system and explain how they can
be systematically simplified by asymptotic analysis. We then illustrate solutions in
three special cases in § 3, each of which leads to an appropriate modification of (1.2).
Results are described in § 4 and their implications discussed in § 5.

2. Governing equations
We assume cell growth is governed by creep in the cell wall induced by the turgor

pressure. A single cell is approximated as an axisymmetric structure, formed from a
sheet of viscous incompressible fluid (representing the cell wall) supported between
rigid end plates and subject to a uniform internal pressure P ∗(t∗) at time t∗. The effects
of neighbouring cells are represented by external longitudinal and radial compressive
forces, Q∗ and P ∗

ext respectively, and an external torque, Σ∗, applied to the top end
of the cell; the bottom end is assumed fixed (figure 2). We measure all pressures
relative to the external radial compressive force, and so take P ∗

ext = 0. Representing
the cell wall as a viscous fluid assumes that it is permanently yielded and will exhibit
irreversible deformation. We assume that the centreline of the cell remains straight as
it elongates.

The equations of mass and momentum conservation in the cell wall (neglecting the
effects of inertia, surface tension and gravity) are

∇∗ · U∗ = F ∗(x∗, t∗), ∇∗ ·σσσ ∗ = 0, (2.1)

where U∗(x∗, t∗) is the fluid velocity relative to a fixed frame of reference with origin
in the centre of the base plate (coordinate x∗), σσσ ∗(x∗, t∗) is the stress tensor and
F ∗(x∗, t∗) is a prescribed source term which represents the deposition of new material
onto the cell wall.

The components of the stress tensor must be defined using an appropriate
constitutive relation. We consider the reinforcement of the plant cell wall by CMF
to be due to a single family of extensible fibres with director field a(x∗, t∗), such
that |a| = 1. Although the fibres will not all be perfectly aligned, we assume a tight
distribution about the mean direction a and thus do not track the distribution
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Figure 2. A cell represented by an axisymmetric fluid sheet with rigid end plates subject to
an internal pressure. The cell walls consist of a viscous fluid containing oriented fibres.

explicitly. The director field satisfies the evolution equation

∂a
∂t∗ +

(
U∗ · ∇∗) a + ζ ∗a =

(
a · ∇∗) U∗, (2.2)

so that the fibres are convected, stretched and reoriented by the flow, preserving unit
length. Here, ζ ∗ = a · e∗ · a, where e∗ = (∇∗U∗ + ∇∗U∗T)/2 is the strain rate, gives the
strain rate in the fibre direction. A derivation of (2.2) is given in Green & Friedman
(2008); this is a special case of a result derived in Ericksen (1960) and generalizes
Jeffery’s treatment of the motion of long ellipsoidal particles (Jeffery 1922), which
align asymptotically in the direction of the principal rate of strain.

The fibre density, ρ∗(x∗, t∗), evolves according to

∂ρ∗

∂t∗ + ∇∗ ·
(
ρ∗U∗) = G∗(x∗, t∗), (2.3)

where G∗(x∗, t∗) is a prescribed source term representing deposition of new material.
The fibres induce transverse isotropy within the fluid aligned with the director

field. We adopt a phenomenological constitutive relation that satisfies material frame
indifference, neglects fibre inertia and is linear in the strain rate, taking a stress tensor
of the form (Ericksen 1960; Hand 1962)

σ ∗
ij = −p∗δij + 2µ∗

0e
∗
ij + µ∗

1aiaj + µ∗
2aiajakale

∗
kl + 2µ∗

3

(
aiale

∗
j l + ajame∗

mi

)
, (2.4)

where δij is the Kronecker delta. Here, p∗ is the fluid pressure and the coefficients
µ∗

0, µ∗
1, µ∗

2, µ∗
3 are parameters that depend on the local fibre density and may be

functions of both time and space (as the cell exerts active control over growth via
enzymatic and biochemical modification of the wall’s properties). µ∗

0, µ∗
2 and µ∗

3 can
be interpreted as viscosities in the following sense. For two-dimensional deformations
in the plane of the fibres, the extensional viscosity parallel to the fibre direction is
µ∗

‖ ≡ µ∗
0 + (µ∗

2 + 4µ∗
3)/2, while that orthogonal to the fibre direction is µ∗

⊥ ≡ µ∗
0; the
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shear viscosity is µ∗
s ≡ µ∗

0 + µ∗
3. We therefore describe µ∗

0 as the isotropic component
of the matrix viscosity (modified by the presence of the fibres); µ∗

2 contributes to
µ∗

‖ while µ∗
3 distinguishes µ∗

⊥ from µ∗
s . µ∗

1 can be considered as a tension in the

fibre direction. In § 3.3 we will follow Spencer (1972) and consider the limit of zero
extensibility in the fibre direction (µ∗

2 → ∞, akale
∗
kl → 0 with their product remaining

finite, treating the net tension µ∗
1 + ζµ∗

2 as a Lagrange multiplier to enforce the
kinematic constraint).

Constitutive relations of the form (2.4) emerge naturally in statistically
homogeneous suspensions of dilute rigid rods; Batchelor (1970) showed how the
stresslet generated due to an ellipsoid (determined originally by Jeffery 1922) can
be used to relate the µ∗

i to the viscosity µ̄ of the suspending fluid (for details see
Lipscomb et al. 1988). However the dilute limit requires individual rods to be very
widely spaced; for the more realistic semi-dilute limit, in which the rod spacing is
intermediate between rod radius and rod length, Batchelor (1971) showed how, in
extensional flow of aligned rods, µ∗

2 ∝ µ̄Ψ r2 (modulo a logarithmic factor), where
Ψ (	 1) is the volume fraction and r (
 1) the rod aspect ratio. This demonstrates
how even small densities of sufficiently long CMF can make µ∗

‖ substantially larger

than µ̄.
The curved surfaces of the viscous sheet are assumed to be free of shear stress and

subject to a transmural pressure difference and kinematic conditions. We prescribe
zero velocity at the base of the cell, while the velocity at the top of the cell in
conjunction with a force balance form the free-boundary problem for the a priori
unknown growing length l∗(t∗) of the cell. We also prescribe the initial size of the cell,
the director field and the density of the fibres.

2.1. Geometric simplification

Following VHO, we exploit the slender geometry of the fluid sheet to derive a
simplified system of governing equations. We employ a mixed moving coordinate
system which is fixed within the fluid sheet, where s∗, the axial arclength along
the centre-surface of the wall (measured from the base plate, see figure 2), and
n∗, the distance from the centre-surface in the inward normal direction, are body-
fitted coordinates while θ , the polar angle, is fixed in space. These coordinates have
respective unit base vectors es , eθ , en. We assume the cell to be axisymmetric, so we
may neglect derivatives with respect to θ; however, the presence of the fibres allows for
non-zero azimuthal velocity. We take R∗(s∗, t∗) to be the radius of the centre-surface
and h∗(s∗, t∗) the thickness of the wall. In the reference frame of the base plate, the
centre-surface of the sheet moves with velocity v∗(s∗, t∗) ≡ v∗

s es + v∗
θ eθ + v∗

nen, with
components which satisfy the kinematic constraints (see Appendix A)

0 =
∂v∗

s

∂s∗ − κ∗
s v

∗
n, (2.5a)

∂R∗

∂t∗ = v∗
s

∂R∗

∂s∗ − R∗κ∗
θ v

∗
n, (2.5b)

v∗
θ

∂R∗

∂s∗ = R∗ ∂v∗
θ

∂s∗ , (2.5c)

where the azimuthal and axial curvatures of the centre-surface are given by

κ∗
θ =

∆

R∗ , κ∗
s = − 1

∆

∂2R∗

∂s∗2
, (2.6)
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where

∆ =

(
1 −

(
∂R∗

∂s∗

)2
)1/2

. (2.7)

We may therefore express the governing equations in terms of the fluid velocity relative
to the moving centre-surface, that is u∗ = U∗ −v∗, where u∗(s∗, t∗) ≡ u∗

s es +u∗
θ eθ +u∗

nen.
(Note that v∗ is not a velocity of material elements, but arises from our geometric
parametrization.)

We non-dimensionalize and rescale the system using

{n∗, h∗} = εR0{n, h}, t∗ = εM0
P0

t, {κ∗
s , κ

∗
θ } =

{κs, κθ}
R0

, {R∗, s∗, l∗} = R0{R, s, l},

ρ∗ = ρ0ρ, {P ∗, Q∗} = P0{P, Q}, ζ ∗ = P0
εM0

ζ, {µ∗
0, µ

∗
2, µ

∗
3} = M0{µ0, µ2, µ3},

µ∗
1 = P0

ε µ1, G∗ =
ρ0P0

εM0
G, F ∗ =

P0R
2
0

M0
F, {u∗, v∗, U∗} = R0P0

εM0
{u, v, U},

e∗ = P0
εM0

e, {p∗,σσσ ∗} = P0
ε {p,σσσ}, Σ∗ = R0P0Σ,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
(2.8)

where R0 is the initial radius of the cell, h0 ≡ εR0 is the initial thickness of the wall
(where the aspect ratio ε 	 1), M0 is the initial matrix viscosity, ρ0 is the initial fibre
density and P0 is the initial turgor pressure (all assumed uniform). Equations (2.5)
and (2.6) become

0 =
∂vs

∂s
− κsvn, (2.9a)

∂R

∂t
= vs

∂R

∂s
− Rκθvn, (2.9b)

vθ

∂R

∂s
= R

∂vθ

∂s
, (2.9c)

κθ =
∆

R
, κs = − 1

∆

∂2R

∂s2
, (2.10)

where ∆ = (1 − (∂R/∂s)2)1/2.

2.2. Asymptotic simplification

The system may be simplified by performing a formal asymptotic expansion of (2.1)
in small ε. VHO found, to leading order from (2.1), U · en = vn, i.e. un = 0 and us , uθ

to be independent of n, leaving the system

∂

∂t
(Rh) +

∂

∂s
(usRh) = F (s, t), (2.11)

κsσ̄ss + κθ σ̄θθ = P, (2.12a)

∂

∂s
(R2κθ σ̄ss) = PR

∂R

∂s
, (2.12b)

∂

∂s
(R2σ̄sθ ) = 0, (2.12c)

where σ̄ss , σ̄sθ , σ̄θθ give the stress components integrated over the thickness of the
sheet; σ̄ss is the longitudinal tension within the sheet, σ̄θθ is the azimuthal tension
and σ̄sθ is the tension caused by shear stresses. Here (2.11) represents conservation
of mass, while (2.12a–c) give conservation of momentum normal, longitudinal and
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azimuthal to the fluid sheet respectively. In general, the transmural pressure difference
will remain constant throughout the motion, but we retain P in (2.12a,b) to allow for
temporal variation of this parameter.

This system of equations was derived by VHO for a Newtonian fluid, but it can
be adapted for any type of viscous fluid by modifying the stress tensor. We must
perform an expansion similar to that in VHO to find the integrated stress tensors and
the appropriately simplified evolution equations for the fibre director field and fibre
density.

We assume that the fibres lie entirely in the plane of the fluid sheet, that is
a = aθ eθ + ases as shown in figure 2. With the exception of Appendix D, we also
assume for simplicity that the fibre orientation does not vary through the wall (fibres
at the inner wall being laid down in the same local configuration as those in the wall).
The axisymmetric fibre director field may therefore be expressed in terms of a single
angle φ to the horizontal such that a = cosφ eθ + sinφ es . However, we continue to
use the notation as and aθ for brevity where appropriate.

We first consider the evolution equation (2.2) for the fibre director field. We perform
a similar asymptotic expansion (details are given in Appendix B.2) and, taking suitable
linear combinations of the components of the resulting equations, find the evolution
equation for the director angle φ to be

∂φ

∂t
+ (us + vs)

∂φ

∂s
= cos φ sin φ

(
∂us

∂s
− 1

R

DR

Dt

)
− sin2 φ

(
∂uθ

∂s
− uθ

R

∂R

∂s

)
, (2.13)

and the strain rate in the fibre direction to be

ζ =
cos2 φ

R

DR

Dt
+ cosφ sinφ

(
∂uθ

∂s
− uθ

R

∂R

∂s

)
+ sin2 φ

∂us

∂s
, (2.14)

where DR/Dt = ∂R/∂t +us∂R/∂s is the convective derivative moving with the centre-
surface.

Expanding the fibre-density evolution equation (2.3) similarly (see Appendix B.3)
we find

∂ρ

∂t
+ (us + vs)

∂ρ

∂s
+ ρ

(
1

R

DR

Dt
+

∂us

∂s

)
= G (s, t) . (2.15)

We now consider the stress components (2.4). Due to linearity we may consider
each term within the stress tensor separately. The leading-order pressure term can be
expressed in terms of us and R using only the expression for σnn. As a · en = 0, this
pressure is not modified from the Newtonian case (VHO) and we do not need to
recalculate it; the pressure and matrix viscosity terms are

p = −2µ0

∂us

∂s
− 2µ0

R

DR

Dt
. (2.16)

Further details of the calculation are given in Appendix B.1.
We find the leading-order strain-rate components to be

ess =
∂us

∂s
, (2.17a)

esθ =
1

2

(
∂uθ

∂s
− uθ

R

∂R

∂s

)
, (2.17b)

eθθ =
1

R

DR

Dt
. (2.17c)
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We retain an additional term in esθ which is missing in VHO (see Howell 1998). Given
(2.14) and (2.17), it is straightforward to write down the integrated axial, azimuthal
and shear tensions as

σ̄ss =
2h

R
µ0

(
2R

∂us

∂s
+

DR

Dt

)
+ hµ1a

2
s + hµ2a

2
s ζ

+4hµ3

(
a2

s

∂us

∂s
+

asaθ

2

(
∂uθ

∂s
− uθ

R

∂R

∂s

))
, (2.18a)

σ̄sθ = hµ0

(
∂uθ

∂s
− uθ

R

∂R

∂s

)
+ hµ1asaθ + hµ2asaθζ

+2hµ3

(
1

2

(
∂uθ

∂s
− uθ

R

∂R

∂s

)
+

asaθ

R

(
DR

Dt
+ R

∂us

∂s

))
, (2.18b)

σ̄θθ =
2h

R
µ0

(
R

∂us

∂s
+ 2

DR

Dt

)
+ hµ1a

2
θ + hµ2a

2
θ ζ

+4hµ3

(
a2

θ

R

DR

Dt
+

asaθ

2

(
∂uθ

∂s
− uθ

R

∂R

∂s

))
, (2.18c)

retaining dimensionless viscosities to allow for their spatial and temporal variation.

2.3. Boundary and initial conditions

We prescribe the initial configuration via

h(s, 0) = 1, R(s, 0) = 1, φ(s, 0) = φ0, ρ(s, 0) = 1, l(0) = l0, (2.19)

so the dimensional initial cell length is l∗
0 ≡ R0l0. The fluid sheet is fixed to the base

of the cell, i.e.

us (0, t) = 0, uθ (0, t) = 0, vs (0, t) = 0, vθ (0, t) = 0, R (0, t) = 1, (2.20)

with conditions

φ (0, t) = φ0, ρ (0, t) = 1, h (0, t) = 1. (2.21)

At the other end of the cell, s = l, we prescribe the radius of the centre-surface

R (l, t) = 1, (2.22)

and take

σ̄sθ (l (t) , t) = Σ (t) ; (2.23)

by varying the torque Σ we can therefore encompass both the cases uθ (l(t), t) = 0,
so that the end is clamped and additional internal stresses will be generated, and
σ̄sθ (l(t), t) = 0, so the end of the cell is stress free, but a non-zero azimuthal velocity
will be generated. The longitudinal tension generated in the cell wall is determined
via a force balance on the end of the cell, that is the pressure acting on the (rigid)
end plate of the cell must balance the tension normal to the plate in the sidewalls
and the external compressive force, viz

R (P − Q)

2
= ∆σ̄ss on s = l(t). (2.24)

Finally, the a priori unknown length of the cell satisfies

us (l(t), t) =
dl

dt
. (2.25)
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2.4. Summary

We therefore have 12 equations (2.9), (2.11)–(2.13), (2.15) and (2.18) for the 12
unknowns us , uθ , vs , vθ , vn, σ̄ss , σ̄sθ , σ̄θθ , R, h, φ, ρ. This system is 11th order in
space and 4th order in time, and is subject to boundary conditions (2.20)–(2.24)
and four initial conditions (2.19a–d). The 13th unknown, l(t), is determined by the
first-order ODE found from the additional boundary condition (2.25), with initial
condition (2.19e). This therefore defines a closed system for the pressure-driven flow
of a thin-walled anisotropic viscous axisymmetric sheet. The azimuthal and normal
components of the centre-surface velocity, vθ , vn, decouple; vn may be determined from
(2.9a) once R and vs are known, while the combination (2.9c) and (2.20d) gives vθ =0.
The normal centre-surface velocity, vn, may be eliminated from (2.9b) using (2.9a),
to find

κs

∂R

∂t
= κsvs

∂R

∂s
− Rκθ

∂vs

∂s
(2.26)

when κs �= 0, or from (2.9a) directly

∂vs

∂s
= 0, (2.27)

if κs = 0. Thus the system reduces to 11 unknowns.
Unlike the case for a purely Newtonian fluid (VHO), the velocity of the centre-

surface, v, does not decouple from the governing equations; vs appears explicitly in
(2.13) and (2.15).

To further simplify the system we integrate (2.12b,c) with respect to s and apply
conditions (2.23), (2.24) to find, for 0 � s � l(t),

σ̄ss (s, t) =
(P − Q)R

2∆
, σ̄sθ (s, t) =

Σ

R2
. (2.28)

3. Simplifications of the model
We now consider different simplifications of the model. As the cell wall is observed

not to get significantly thinner during elongation, we pick F (s, t) in (2.11) to ensure
a solution in which h = 1. This function may be determined once R and us have been
found. Similarly, we pick G(s, t) in (2.15) to ensure a solution in which ρ = 1, so
the fibre density remains constant. This eliminates two further unknowns, and leaves
(2.12), (2.13), (2.18), (2.25) and (2.27) for the nine unknowns us , uθ , vs , σ̄ss , σ̄sθ , σ̄θθ , R,
φ and l.

In § 3.1 we consider purely horizontal fibres (in a vertical cell), with no stretching in
the fibre direction to leading order. In § 3.2 we extend this to small fibre angle. Finally,
in § 3.3 we consider inextensibility in the fibre direction, for general fibre angle. Each
case leads to a substantial simplification of the governing equations.

3.1. Case 1: horizontal fibres

If the fibres are initially horizontal, φ = 0 satisfies (2.13) identically, so the fibres
remain horizontal for t > 0. As vs appears only in (2.13), this reduces the unknowns
in the system by two to seven. Therefore we must solve (2.12) and (2.25) where, from
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(2.18) with aθ = 1, as =0,

σ̄ss = µ0

2

R

(
2R

∂us

∂s
+

DR

Dt

)
, (3.1a)

σ̄sθ = (µ0 + µ3)

(
∂uθ

∂s
− uθ

R

∂R

∂s

)
, (3.1b)

σ̄θθ = 2µ0

∂us

∂s
+ µ1 + (4µ0 + µ2 + 4µ3)

1

R

DR

Dt
. (3.1c)

Because uθ decouples, appearing only in (3.1b), we may integrate the combination
(2.28b) and (3.1b) with respect to s and apply conditions (2.20b) and set uθ = 0 or
σ̄sθ = 0 on s = 0 to find uθ = 0 (and hence σ̄sθ = 0 also) identically; no azimuthal
velocity is induced by the presence of the fibres (in the absence of an external
torque). Thus the system is simplified to five unknowns, satisfying (2.12a,b), (2.25) and
(3.1a,c).

With little experimental data on the relevant viscosities, we make a hypothesis about
their relative sizes. Since plant cells expand longitudinally within the root expansion
zone and display minimal radial expansion (see figure 1), we would like a solution
in which R remains roughly constant, maintained by a large azimuthal tension σ̄θθ

balancing the internal pressure. We therefore take µ2 +4µ3 (proportional to µ∗
‖ − µ∗

⊥)

to be large so that R = 1 to leading order in (3.1c). Noticing that µ2 and µ3 appear
only in the combination µ2 +4µ3 in what follows, we take µ2 +4µ3 = νM(s, t), where
ν 
 1 and M(s, t) is an O(1) function. We must ensure, however, that our original
expansion performed in § 2 remains valid. If ν is taken to be so large that εν is
O(1), then O(ε) terms in the expansion of strain rate (Appendix B.1) will enter the
O(1) expansion of the stress tensor (2.18) which are currently neglected. We therefore
require ε 	 1/ν 	 1.

We rescale σ̄θθ = νσ̃θθ and construct a regular expansion in powers of small 1/ν
such that R = R(0) + R(1)/ν + · · · . At leading order in 1/ν, from (2.12a) and (3.1c)
(where D(0)/Dt ≡ ∂/∂t + u(0)

s ∂/∂s)

κ
(0)
θ σ̃

(0)
θθ = 0, σ̃

(0)
θθ =

M(s, t)

R(0)

D(0)R(0)

Dt
(3.2)

along with (2.11), (2.12b) and (2.18a) applied to leading-order quantities. Using (3.2)
we find

σ̃
(0)
θθ = 0,

D(0)R(0)

Dt
= 0, (3.3)

and we choose F (s, t) in (2.11) to be R(0) ∂u(0)
s /∂s to ensure h(0) = 1. Therefore (3.1a)

reduces to

σ̄ (0)
ss = 4µ0(s, t)

∂u(0)
s

∂s
. (3.4)

This is equivalent to the usual Trouton (1906) model for extensional flow; the fibres
resist radial changes but the matrix viscosity controls axial expansion.

Expanding (2.28b) we find

σ̄ (0)
ss =

(P − Q) R(0)

2∆(0)
, (3.5)
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where ∆(0) = (1 − (∂R(0)/∂s)2)1/2, leaving us to solve a nonlinear hyperbolic PDE for
R(0) given by (3.3b) with

∂u(0)
s

∂s
=

(P − Q) R(0)

8µ0 (s, t) ∆(0)
. (3.6)

This gives the evolution from a general initial condition for R. When R (s, 0) = 1, as
in (2.19), (3.3b) has the simple solution R(0) = 1, which immediately gives

v(0)
s = v

(0)
θ = v(0)

n = 0, (3.7)

from (2.9). We may therefore integrate (3.6) with respect to s to find

u(0)
s =

(P − Q)

8

∫ s

0

1

µ0 (s, t)
ds. (3.8)

Finally, applying boundary condition (2.25) for the leading-order unknown length of
the cell, l(0), we find

dl(0)

dt
=

(P − Q)

8

∫ l(0)

0

1

µ0 (s, t)
ds. (3.9)

Thus, we have an ODE for the growing cell length depending on the internal turgor
pressure P (t), the external compression Q and the matrix viscosity µ0(s, t).

At next order in 1/ν in (2.12a) and (3.1a), we find (assuming µ1 =O(1))

κ (0)
s σ̄ (0)

ss + κ
(0)
θ σ̃

(1)
θθ + κ

(1)
θ σ̃

(0)
θθ = P, (3.10)

σ̃
(1)
θθ = M(s, t)

1

R(0)

D(0)R(1)

Dt
+ 2µ0

∂u(0)
s

∂s
+ µ1, (3.11)

which reduces to

D(0)R(1)

Dt
=

1

M(s, t)

(
3P

4
− µ1 +

Q

4

)
, (3.12)

upon substituting for the leading-order expressions (note κ (0)
s = 0, κ

(0)
θ = 1/R(0)). This

shows that growth or shrinkage of the cell during elongation is governed by the
relative sizes of µ1, which is related to the pre-stress in the fibres, the transmural
pressure difference P and the external compression Q. When P is sufficiently large,
the cell will expand radially; µ2 + 4µ3 will influence the speed of this radius change,
whereas the matrix viscosity µ0 affects the longitudinal velocity u(0)

s .
If we assume µ0 = µ0(t), we recover a simple version of (1.2)

u(0)
s =

(P − Q)

8µ0

s,
dl(0)

dt
=

(P − Q)

8µ0 (t)
l(0), (3.13)

giving

l(0) (t) = l0 exp

(
(P − Q)

8

∫ t

0

1

µ0 (t)
dt

)
, (3.14)

where l0 is the initial length of the cell.
If, in addition, the fibre properties do not vary during growth, so that M(s, t) = 1,

and µ1 is constant, (3.12) gives (assuming R(1) = 0 at t = 0)

R(1)(s, t) = t

(
3P

4
− µ1 +

Q

4

)
, (3.15)
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for the majority of the cell length. Near s = 0, l there will be boundary layers in
which we expect the curvature term κs (containing a second derivative of R in s)
to become important, allowing the radius to adjust to satisfy R(1) = 0 at s = 0, l.
We do not consider this inner problem here. We discuss the significance of the
predictions of this simple form of the model, particularly (3.13) and (3.14), in § 4
below.

3.2. Case 2: small fibre angle

We now consider the case of small, but non-zero, fibre angle. Of course φ, while
starting small, may not remain so, but considering this case gives insight into the less
tractable case φ = O(1). We return to the system of nine unknowns discussed at the
start of § 3, again taking µ2 or µ3 to be large to resist changes in radius as the cell
expands.

We set φ = δφ̃, for δ = φ0 	 1 such that φ̃ = 1 at t = 0, taking φ̃ = O(1); we also
rescale uθ = δũθ in order to find the non-zero induced azimuthal velocity. We shall
investigate different magnitudes of δ in comparison to µ2 and µ3 shortly; as before
we must take care not to violate the original asymptotic expansion in ε. Taylor-
expanding aθ and as in small δ yields aθ = 1 − δ2φ̃2/2 + · · · , as = δφ̃ − δ3φ̃3/6 + · · · ,
and we construct a regular expansion in δ of the form R = R(0) + δ2R(1) + · · · . Thus
we express integrated stresses (2.18) as

σ̄ss =
2

R(0)
µ0

(
2R(0) ∂u(0)

s

∂s
+

D(0)R(0)

Dt

)
+ µ1δ

2φ̃(0)2 + µ2δ
2φ̃(0)2

(
ζ (0) + δ2ζ (1)

)

+ 4µ3δ
2φ̃

(
1

2

(
∂ũ

(0)
θ

∂s
− ũ

(0)
θ

R(0)

∂R(0)

∂s

)
+ φ̃

∂u(0)
s

∂s

)
+ · · · , (3.16a)

σ̄sθ = µ0δ

(
∂ũ

(0)
θ

∂s
− ũ

(0)
θ

R(0)

∂R(0)

∂s

)
+ µ1δφ̃

(0) + µ2δφ̃
(0)

(
1 − δ2φ̃(0)2

2

)(
ζ (0) + δ2ζ (1)

)

+ 2µ3δ

(
1

2

(
∂ũ

(0)
θ

∂s
− ũ

(0)
θ

R(0)

∂R(0)

∂s

)
+

φ̃(0)

R(0)

(
D(0)R(0)

Dt
+ R(0) ∂u(0)

s

∂s

))
+ · · · ,

(3.16b)

σ̄θθ =
2

R(0)
µ0

(
R(0) ∂u(0)

s

∂s
+ 2

D(0)R(0)

Dt

)
+ µ1 + µ2

(
1 − δ2φ̃(0)2

) (
ζ (0) + δ2ζ (1)

)

+ 4µ3

(
1

R(0)

D(0)R(0)

Dt
+ δ2

(
1

R(0)

(
D(0)R(1)

Dt
+ u(1)

s

∂R(0)

∂s

)
− φ̃(0)2

R(0)

D(0)R(0)

Dt

)

+
φ̃(0)

2

(
∂ũ

(0)
θ

∂s
− ũ

(0)
θ

R(0)

∂R(0)

∂s

))
+ · · · , (3.16c)

the evolution equation for the director field (2.13) as

∂φ̃(0)

∂t
+

(
u(0)

s + v(0)
s

) ∂φ̃(0)

∂s
= φ̃(0)

(
∂u(0)

s

∂s
− 1

R(0)

D(0)R(0)

Dt

)
+ · · · , (3.17)
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and the relative length change of fibres (2.14) as

ζ = ζ (0) + δ2ζ (1) + · · · ,

=
1

R(0)

D(0)R(0)

Dt
+ δ2

(
1

R(0)

(
D(0)R(1)

Dt
+ u(1)

s

∂R(0)

∂s

)
− φ̃(0)2

R(0)

D(0)R(0)

Dt

+φ̃(0)

(
∂ũ

(0)
θ

∂s
− ũ

(0)
θ

R(0)

∂R(0)

∂s
+ φ̃(0) ∂u(0)

s

∂s

))
+ · · · . (3.18)

We have retained terms past leading order in (3.16)–(3.18) in places where the leading-
order terms turn out to be identically zero. These expressions, along with the original
governing equations (2.11) and (2.12) and the expression (2.27) for the axial velocity
of the moving coordinate frame, define the system to be solved, subject to initial and
boundary conditions (2.19)–(2.25).

From (2.12a) and (3.16c) we again see that if we take µ2 + 4µ3 to be large the cell
will resist changes in radius. However, unlike the case with horizontal fibres, µ2 and
µ3 do not appear just in this combination. We can therefore take either (or both)
of these quantities to be large. To retain the order of the original expansion, we still
require ε 	 {1/µ2, 1/µ3} 	 1 as in § 3.1, from which we recover (3.3b).

Therefore (3.17) becomes

∂φ̃(0)

∂t
+

(
u(0)

s + v(0)
s

) ∂φ̃(0)

∂s
= φ̃(0) ∂u(0)

s

∂s
(3.19)

along with (2.28) applied to leading-order quantities. The lowest-order terms (in δ) in
the expansion of σ̄ss , σ̄sθ are given by

σ̄ss = 4µ0

∂u(0)
s

∂s
+ µ1δ

2φ̃(0)2 + µ2δ
4φ̃(0)2ζ (1)

+4µ3δ
2φ̃

(
1

2

(
∂ũ

(0)
θ

∂s
− ũ

(0)
θ

R(0)

∂R(0)

∂s

)
+ φ̃

∂u(0)
s

∂s

)
+ · · · , (3.20a)

σ̄sθ = µ0δ

(
∂ũ

(0)
θ

∂s
− ũ

(0)
θ

R(0)

∂R(0)

∂s

)
+ µ1δφ̃

(0) + µ2δ
3φ̃(0)ζ (1)

+2µ3δ

(
1

2

(
∂ũ

(0)
θ

∂s
− ũ

(0)
θ

R(0)

∂R(0)

∂s

)
+ φ̃(0) ∂u(0)

s

∂s

)
+ · · · , (3.20b)

where ζ (1) is given by

ζ (1)=
1

R(0)

(
D(0)R(1)

Dt
+ u(1)

s

∂R(0)

∂s

)
+ φ̃(0)

(
∂ũ

(0)
θ

∂s
− ũ

(0)
θ

R(0)

∂R(0)

∂s
+ φ̃(0) ∂u(0)

s

∂s

)
(3.21)

from (3.18). Since R(1) and u(1)
s appear within (3.21) we must go to next order to

close the model. However, when R =1 initially, R(0) = 1 from (3.3b) and hence u(1)
s

decouples, no longer appearing in (3.21). The slow creep of the cell radius, R(1), is
determined from the next-order terms within (2.12a) and (3.16c).

It is useful to scale {σ̄sθ , Σ} = {σ̃sθ , Σ̃}/δ so that µ1, µ2, µ3 and δ appear in the
same combinations in (3.20a) and the rescaled (3.20b). Combining (2.12a) and (2.28)
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with (3.16c) and (3.20) we find

P = 2µ0

∂u(0)
s

∂s
+ µ1 + µ2δ

2ζ (1) + 4µ3δ
2

(
D(0)R(1)

Dt
+

φ̃(0)

2

∂ũ
(0)
θ

∂s

)
, (3.22a)

P − Q

2
= 4µ0

∂u(0)
s

∂s
+ δ2φ̃(0)2

(
µ1 + µ2δ

2ζ (1)
)

+ 4µ3δ
2φ̃

(
1

2

∂ũ
(0)
θ

∂s
+ φ̃

∂u(0)
s

∂s

)
, (3.22b)

Σ̃ = µ0δ
2 ∂ũ

(0)
θ

∂s
+ δ2φ̃(0)

(
µ1 + µ2δ

2ζ (1)
)

+ 2µ3δ
2

(
1

2

∂ũ
(0)
θ

∂s
+ φ̃(0) ∂u(0)

s

∂s

)
, (3.22c)

where

ζ (1) =
D(0)R(1)

Dt
+ φ̃(0)

(
∂ũ

(0)
θ

∂s
+ φ̃(0) ∂u(0)

s

∂s

)
, (3.23)

from (3.21).
We wish to investigate distinguished limits in which the maximum number of terms

within (3.22) appear. Clearly we should take µ1 = O(µ2δ
2), µ3δ

2 = O(1), but the choice
of size for µ2 is less clear; µ2δ

2 appears in (3.22a) whereas µ2δ
4 appears in (3.22b)

and (3.22c). When µ2δ
2 = O(1) all terms appear within (3.22a), but the µ1 and µ2

terms within (3.22b) and (3.22c) are O(δ2). When µ2δ
4 =O(1), however, the µ1 and µ2

terms dominate within (3.22a), and hence µ1 + δ2µ2ζ
(1) = 0 (implying high resistance

to stretching in the fibre direction), removing the dependence on µ1, µ2 within (3.22b)
and (3.22c) as well. We therefore take µ0 = O(1), µ1 = O(1), µ2δ

2 = M2, µ3δ
2 = M3

where M2, M3 are order one functions; the limits M1 → ∞, M2 → ∞ capture the case
µ1δ

2 = O(1), µ2δ
4 =O(1)

Assuming µ0, µ1, M2, M3, φ0, R0 have no spatial dependence, with R(0) = 1, we find
(3.7) and

dφ̃(0)

dt
= φ̃(0) ∂u(0)

s

∂s
. (3.24)

As in the case for R(1) in § 3.1, we take φ̃ to be only a function of time, neglecting the
region over which it adjusts from φ = φ0 at s = 0. This inner problem is expected to
have little effect on the overall dynamics. Integrating (3.22b) and (3.22c) with respect
to s, and solving the resulting simultaneous equations for u(0)

s and ũ
(0)
θ , we find (in

terms of the unknown φ̃(0)(t))

u(0)
s =

P − Q − 4Σ̃φ̃(0)

8µ0

s, (3.25a)

ũ
(0)
θ =

4
(
µ0 + M3φ̃

(0)2
)

Σ̃ − M3φ̃
(0) (P − Q)

4µ0M3

s. (3.25b)

Finally, applying (2.25) to (3.25a) we find

1

l(0)

dl(0)

dt
=

P − Q − 4Σ̃φ̃(0)

8µ0

. (3.26)

This is a modified Lockhart-type equation incorporating the effects of non-zero fibre
angle. When φ̃ = 0 or Σ̃ = 0 we regain the original expression (3.13b); (3.26) shows
how torque on the end plates can amplify the effects of small fibre tilt to have a
leading-order influence on the cell’s rate of extension.
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Substituting (3.25) into (3.22a) and rearranging, we find a PDE for R(1), also in
terms of the unknown φ̃(0),

(M2 + 4M3)
D(0)R(1)

Dt
= P

(
3

4
+

M2 + 4M3

8µ0

φ̃(0)2
)

− µ1 + Q

(
1

4
− (M2 + 4M3) φ̃(0)2

8µ0

)

−
(
2µ0 (M2 + M3) + (M2 + 4M3) M3φ̃

(0)2
) φ̃(0)Σ̃

2µ0M3

, (3.27)

again neglecting boundary layers near s =0, l. This equation reduces to (3.12) when
φ̃ = 0, noting M2 +4M3 = M . From (3.27), we see that the external torque can be used
to suppress radius changes, by choosing Σ such that the right-hand side is equal to
zero.

Using (2.25) and (3.24), l(0) and φ(0) may be related via

dl(0)

dt
=

∫ l(0)

0

∂u(0)
s

∂s
ds =

l(0)

φ̃(0)

dφ̃(0)

dt
, (3.28)

and hence

φ̃(0) (t) = l(0)/l0. (3.29)

Therefore (3.26) may be written as a nonlinear ODE for the unknown length l(0). We
rescale l̂ = l(0)/l0 to find

1

l̂

dl̂

dt
=

P − Q − 4Σ̃ l̂

8µ0

, (3.30a)

(M2 + 4M3)
D(0)R(1)

Dt
= P

(
3

4
+

M2 + 4M3

8µ0

l̂2
)

− µ1 + Q

(
1

4
− (M2 + 4M3) l̂2

8µ0

)

−
(
2µ0 (M2 + M3) + (M2 + 4M3) M3 l̂

2
) l̂Σ̃

2µ0M3

. (3.30b)

The cell length may be determined from (3.30a), whence the slow radius evolution
may be found from (3.30b). Predictions from (3.30) are illustrated in § 4. An extension
of (3.30a) to incorporate variation of fibre direction across the wall is given in
Appendix D.

3.3. Case 3: Inextensibility in the fibre direction

We now consider the material to be inextensible in the fibre direction, that is we take
µ2 → ∞, ζ = aiaj eij → 0 in (2.18) with µ2aiaj eij = T̂ where T̂ is the O(1) tension along
the fibres which enforces inextensibility. In contrast to § 3.2, we no longer assume that
the fibre angle is small. We return to the system of nine unknowns described at the
start of § 3. The non-dimensional stress tensor (2.4) becomes

σij = −pδij + 2µ0eij + T aiaj + 2µ3

(
aialejl + ajamemi

)
, (3.31)

where T = µ1 + T̂ , absorbing the pre-stress within the fibres into the tension induced
by inextensibility.

In §§ 3.1 and 3.2, we found a solution for zero and small fibre angle in which the
cell radius is constant for large µ2 and for which us , uθ depend linearly on s, when we
take no spatial dependence within µ0, µ1, µ2, µ3, φ0. We therefore look for a similarity
solution in which these effects are assumed. We impose R = 1 through the appropriate
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choice of Σ (as suggested by (3.27)); while to some degree this is artificial, it allows
the finite-angle case to be addressed directly. This simplifies (2.12a) and (2.28a) to

σ̄θθ = P, σ̄ss = (P − Q) /2, (3.32)

and retains (2.28b). We assume uniform axial stretching and twisting, that is

(uθ , us) = E (t) (cosα, sinα) s (3.33)

for some E(t), where α gives the direction of stretching. Substituting (3.33) into (2.13),
(2.14), (2.25), (3.31) we find

1

l

dl

dt
= E sin α, (3.34a)

ζ = 0 = E sinφ cos (α − φ) , (3.34b)

dφ

dt
= E sin φ sin (α − φ) , (3.34c)

σ̄ss = 4µ0E sinα + T sin2 φ + 4µ3E

(
sin2 φ sinα +

sinφ cosφ cosα

2

)
, (3.34d )

σ̄sθ = µ − 0E cosα + T sin φ cos φ + µ3 (E cos α + 2E sinφ cosφ sinα) , (3.34e)

σ̄θθ = 2µ0E sinα + T cos2 φ + 4µ3

E sinφ cos φ cosα

2
. (3.34f )

Using (3.32), (3.34d) and (3.34f) we solve the resulting simultaneous equations for
E and T to find

T =
2(3µ0 sin α + µ3(4 sin2 φ sinα + sinφ cosφ cosα))E + Q

3 cos2 φ − 2
, (3.35a)

E =
(3/2 cos2 φ − 1)P − 1/2 cos2 φ Q

(2µ0 sin α(3 cos2 φ − 1)+2µ3 sinφ cos φ(2 sin φ cos φ sin α+(2 cos2 φ − 1) cos α))
.

(3.35b)

The appropriate choice of Σ to impose zero radius change is therefore of the form

Σ = µ0E cos α + T sinφ cos φ + µ3E (cosα + 2 sinφ cosφ sinα) , (3.36)

from (2.28b) and (3.34e). From (3.34b) there are three possibilities to ensure zero
extension in the fibre direction; E = 0, sin φ =0 or cos(φ − α) = 0. When E = 0,
equivalent from (3.35b) to φ =φc where (assuming Q<P )

cosφc =
√

2P/ (3P − Q), (3.37)

there is no growth of the cell. When φ =0, we regain the system considered in § 3.1. We
therefore consider the case cos(φ − α) = 0. Since we expect 0 <φ < π/2 and sinα > 0
(so us > 0), we take α =φ + π/2. Thus we find

1

l

dl

dt
= E cos φ, (3.38a)

dφ

dt
= E sinφ, (3.38b)

T =
3(µ0 + µ3 sin2 φ)P + (µ0 − µ3 sin2 φ)Q

2(µ0(3 cos2 φ − 1) + µ3 sin2 φ)
, (3.38c)

E =
(3 cos2 φ − 2)P − cos2 φ Q

4 cosφ(µ0(3 cos2 φ − 1) + µ3 sin2 φ)
, (3.38d )
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from (3.34a), (3.34c), and (3.35). Combining (3.38a) and (3.38d) and taking φ = 0
regains (3.13b). Equations (3.38b) and (3.38d) reduce to a single nonlinear ODE for
the fibre angle, φ,

dφ

dt
=

((3 cos2 φ − 2)P − cos2 φ Q) sinφ

4 cosφ(µ0(3 cos2 φ − 1) + µ3 sin2 φ)
. (3.39)

We now consider the cell length. Eliminating E from (3.38a) and (3.38b) (assuming
φ0 �= 0), we find

l

l0
=

sinφ

sinφ0

, (3.40)

which is equivalent to (3.29) for small fibre angle. Substituting (3.40) in (3.39) and
rescaling l̂ = sinφ0l/ l0, we find

1

l̂

dl̂

dt
=

(1 − 3l̂2)P − (1 − l̂2)Q

4(µ0(2 − 3l̂2) + µ3 l̂2)
. (3.41)

Provided 0 <φ0 <φ†, where cosφ† =
√

(µ0 − µ3)/(3µ0 − µ3), φ will tend to the
steady state φc (see (3.37)) as t → ∞. Likewise, for Q < P ,

l → l0

sin φ0

√
P − Q

3P − Q
(3.42)

for increasing time. This limit is independent of the mechanical properties of the wall;
for a given initial fibre orientation the cell will grow to the same constant length in
all cases.

Taking µ0 ( = 1 without loss of generality) and µ3 to be constant, we solve (3.39)
to find ( (

3 cos2 φ − 2
)
P − cos2 φQ(

3 cos2 φ0 − 2
)
P − cos2 φ0Q

)Υ

cos2 φ − 1

cos2 φ0 − 1
= exp

(
(P − Q) t

4

)
, (3.43a)

where

Υ ≡ − (3P + Q + µ3 (P − Q))

2 (3P − Q)
, (3.43b)

along with

l̂2

l̂20

(
P (3l̂2 − 1) − Q(l̂2 − 1)

P (3l̂20 − 1) − Q(l̂20 − 1)

)Υ

= exp

(
(P − Q)t

4

)
, (3.43c)

where l̂0 = sinφ0. Solutions (3.43a) and (3.43c) are discussed in § 4.

4. Results
In § 3 we derived the governing equations for anisotropic plant cell expansion

for three simplifying sets of assumptions: horizontal fibres (i.e. perpendicular to the
longitudinal axis of the cell, § 3.1), fibres with a small deviation from horizontal
(§ 3.2) and complete inextensibility in the fibre direction (§ 3.3). It is straightforward
to reduce both solutions found in §§ 3.2, 3.3 to that found in § 3.1 in the limit φ → 0,
and we show how solutions in §§ 3.2 and 3.3 match up in limiting cases in Appendix
C. We now discuss these results in more detail, in particular comparing them to the
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Lockhart-type cell-growth equation (1.2) for turgor-pressure-induced growth, noting
that we are considering the zero-yield limit.

Measuring the viscosity of the cell wall is experimentally very difficult, and few
measurements are available in the literature. Those that do exist are tissue-scale
measurements of many cells and are thus not an accurate reflection of the matrix
viscosity described here. However, these measurements should give a rough order of
magnitude to validate our model. Thompson (2001) (for tomato epidermal cells)
and Tanimoto et al. (2000) (for the elongation zone of pea lateral roots) give
tissue-scale extensional viscosity values of 109–1011 kg m−1 s−1. Within the Arabidopsis
elongation zone, cells have a radius of approximately 10 µm (Swarup et al. 2005) and
a cell-wall thickness of 70 nm (P. Derbyshire 2008, personal communication; similar
measurements are reported for Arabidopsis hypocotyls in Derbyshire et al. 2007a)
with a longitudinal pressure difference (i.e. P ∗ − Q∗) of approximately 1 bar. If the
matrix viscosity is taken to be constant, the dimensional version of (3.14) may be
written as an expression for this viscosity in terms of the more accurately known
quantities, viz

µ∗
0 =

(P ∗ − Q∗)R∗
0 t

∗

8h∗ ln(l∗/l∗
0)

. (4.1)

For the cell to grow in length approximately 30 times over a time scale of 6 h (i.e.
setting l∗/l∗

0 = 30, t =6 h in (4.1)) gives a matrix viscosity of the order 1010 kg m−1 s−1,
which is similar to that found by Thompson (2001) and Tanimoto et al. (2000). From
(2.8), these values equate to one non-dimensional time unit representing 800 s, and so
the 6 h of growth through the elongation zone is equivalent to 30 non-dimensional
time units.

When the fibres are initially horizontal they remain horizontal; a high elongational
viscosity in the fibre direction restricts radial changes while allowing axial expansion.
Our expression for the growing length of the cell, (3.13b), reduces to the zero-yield
Lockhart-type cell-growth equation when the matrix viscosity is a function of time
only. We can therefore identify the empirical ‘extensibility’ appearing in (1.2) and (1.3)
of an individual cell in terms of fundamental quantities, that is

Φ∗ =
1

4µ∗
0

, Φ
∗
=

R∗
0

8µ∗
0h

∗
0

. (4.2)

In this case, Φ∗ depends only on the matrix viscosity of the cell wall; the fibre
properties do not appear explicitly, although the effects of cross-links between CMF,
and the presence of the fibres themselves, can be assumed to influence µ∗

0. The

definition of extensibility often used in the literature (Φ
∗
) incorporates geometric

factors which are explicit within our growth equation. As is evident from (3.14), when
µ∗

0 is constant the cell length l/ l0 when the fibres are horizontal increases exponentially
if the turgor pressure P exceeds the external compressive force Q. Growth may be
saturated if the matrix viscosity increases sufficiently rapidly with time, as illustrated
in figure 3.

For small fibre angles (φ =O(δ)), we consider the canonical limit µ1 =O(1),
µ2δ

2 = O(1), µ3δ
2 = O(1), which contains the most leading-order effects. The large

elongational viscosity (µ2 + 4µ3) again suppresses radial changes while allowing
axial growth. When the viscosities, initial cell radius and fibre angle have no spatial
dependence, the cell length is proportional to scaled fibre angle (3.29). Since the
length of the cell increases approximately 30 fold over the length of the elongation
zone (Swarup et al. 2007), this implies that the fibre angle will in general not remain



492 R. J. Dyson and O. E. Jensen

10 20 30 40 50 600

5

10

15

20

25

30

35

40

45

t

l(0
) /l

0

Figure 3. The length of the cell (rescaled with initial length) when φ = 0. Solutions of (3.13b)
are shown for P = 1, Q = 1/2 for constant matrix viscosity (dashed line, µ0 = 1); and for an
increasing matrix viscosity (solid line, µ0(t) = (exp((t/45)8) − 1)/100 + 1 for illustration).
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Figure 4. (a) The length of the cell (rescaled with initial length) and (b) the azimuthal velocity
of the free end when φ0 	 1. Graphs are plotted with Q = 1/2, µ3 = 1 varying Σ/φ0 between
0 and 0.1 in steps of 0.02, with P =1 and µ0 = 1. In (a) the solutions of (3.30a) are plotted as
solid lines; (b) shows solutions of (3.25b). The dashed lines in (a) show solutions of (D 14) for
Σ/φ0 = 0, 0.1.

small and the expansion may ultimately become invalid. The zero-yield Lockhart-type
cell-growth equation generalizes to (3.30a), which becomes

1

l∗
dl∗

dt∗ =
1

8µ∗
0h0

(
R0(P

∗ − Q∗) − 4φ0l
∗Σ∗

l∗
0

)
, (4.3)

upon redimensionalization, differing from the horizontal fibre case only in the presence
of an applied external torque, when additional nonlinearities appear. The axial growth
rate of the cell depends on the cell geometry, the matrix viscosity and can ultimately
be suppressed either by sufficient external torque (figure 4) or by stiffening of the
matrix through µ∗

0(t
∗). The fibre properties may interact with the torque but they

primarily control the radial expansion, enforcing zero radius change at leading
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Figure 5. The length of the cell (rescaled with initial length) when φ0 	 1. The solution of
(3.30a) is plotted, with Σ = µ3φ(P −Q)/4(µ0 +µ3φ

2) to enforce uθ = 0 (from (3.25b)). We take
Q = 1/2, P = 1, µ0 = 1 and plot the solutions for µ3 = 0.1, 0.5, 1, 5, 10, 50, 100 and 500.

order and appearing within the expression for the small radius changes at next
order (3.30b).

We plot the evolving normalized cell length (equivalent to the normalized fibre
angle) and the azimuthal velocity of the end of the cell against time in figures 4 and 5,
with constant internal pressure, matrix viscosity and external compressive force. The
torque limits axial expansion of the cell and reorientation of the fibres (figure 4a);
fibres with positive pitch induce rotation in the opposite sense (figure 4b) (see the
−M3φ̃

(0) term in (3.25b)) which is suppressed by torque aligned with the primary fibre
direction. Provided the applied torque is small enough (Σ∗ � R2

0(P
∗ − Q∗)/4φ0l

∗
0), the

length increases to a steady state such that

l∗

l∗
0

=
R0 (P ∗ − Q∗)

φ0Σ∗ . (4.4)

In contrast, if we apply a torque such that the azimuthal velocity is zero (see (3.25b)),
the cell elongates indefinitely but grows more slowly if µ3 (which contributes to the
shear viscosity) is larger (figure 5). In this case µ3 provides an additional mechanism
for restraining cell expansion.

It is reasonably straightforward to extend the present approach to take into account
variations in fibre orientation across the thickness of the wall, as happens when
new fibres are deposited at a constant angle on the inner surface of the wall and
are passively reorientated as they move towards the outer face of the wall by the
elongational flow, as has been observed experimentally (Kutschera 2008; Anderson
et al. 2010). For the small-angle case we derive a modified version of (3.30a) and
(D 14) as shown in Appendix D, which becomes

1

l∗
dl∗

dt∗ =
R0 (P ∗ − Q∗) − 4φ0(1 + log

(
l∗/l∗

0

)
)Σ∗

8h∗
0(µ

∗
0 + µ∗

3φ
2
0(2l∗/l∗

0 − 1 − (1 + log(l∗/l∗
0))

2))
, (4.5)

upon redimensionalization. The effect of torque is reduced since fewer fibres are at the
larger angle, reducing (but not eliminating) the capacity of passive fibre reorientation
to suppress cell elongation, while µ3 (which contributes to the shear viscosity) now
appears even in the absence of torque and acts to reduce the expansion rate (figure 4a).
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Finally, we consider the case in which the cell wall is inextensible in the fibre
direction, the fibre angle need not be small and an external torque is applied to
enforce zero radius change. A modified zero-yield Lockhart-type cell-growth equation
(3.41) is found along with (3.39) for the fibre angle, which become

1

l∗
dl∗

dt∗ =
R0

4h0

(
(1 − 3l∗2/l∗2

0 )P ∗ − (1 − l∗2/l∗2
0 )Q∗

µ∗
0(2 − 3l∗2/l∗2

0 ) + µ∗
3l

∗2/l∗2
o

)
, (4.6a)

dφ

dt∗ =
R0 sinφ

4h0 cos φ

(
(3 cos2 φ − 2)P ∗ − cos2 φ Q∗

µ∗
0(3 cos2 φ − 1) + µ∗

3 sin2 φ

)
, (4.6b)

upon redimensionalization. Again, the axial growth is controlled by µ3, as well as the
matrix viscosity and the geometry of the cell. Assuming the fibre angle is relatively
small initially, and the viscosities remain constant, the length will increase to the
constant value given by (3.42), whereupon the fibres lock the cell length in place with
tension in the fibres balancing the competing internal and external normal stresses P

and Q as well as the external torque. This final length is determined by the geometry
of the cell and the fibres only; there is no dependence on the material properties. We
plot the cell length and fibre angle in figure 6 for fixed P and Q and varying φ0 and
µ3. In all cases a steady state is achieved; the initial fibre angle controls the final cell
length, while the same steady state is found for the cell length for varying µ3 and the
fibre angle in both cases. Increasing µ3 slows the evolution to the steady state, while
the cell may even shrink if φ0 is sufficiently large.

5. Discussion
We have modelled the anisotropic expansion of a diffusely growing plant cell within

the primary root elongation zone, describing the cell as a pressurized axisymmetric
viscous sheet between rigid end plates. In doing so we have developed an extended
framework for modelling extensional flows of thin sheets of fibre-reinforced materials.

In the simplified cases considered here, we have identified three mechanisms by
which cell expansion is regulated. When the CMF are all orthogonal to the axis
of the cell, the parameter µ0 (representing the isotropic component of the matrix
viscosity) is the primary determinant of the rate of cell elongation (assuming fixed
turgor pressure and fixed external forcing). It is necessary for µ0 to increase rapidly
in time for the cell to stop its expansion, as illustrated in figure 3. The present model
does not discriminate explicitly between the viscosity of the pectin matrix (modified
by the presence of the fibres) and the properties of cross-links between fibres, both of
which are under independent hormonal regulation in the expansion zone of the root.
The primary role of the fibres in this case is to inhibit radial expansion as the cell
elongates. If, instead, the fibres are tilted to have a small component in the cell-axis
direction, then an external torque can contribute to saturation of the growth of the
cell (figure 4a), as can the viscous parameter µ3 associated with the anisotropic shear
response of the fibrous material (which again is likely to be influenced indirectly by
cross-linking molecules). When the fibre angle varies across the cell wall and new fibres
are deposited at a constant angle, the growth rate exhibits a length-dependent slowing,
even in the absence of an external torque (figure 4a). If the external torque inhibits
rotation of the cell wall, despite the presence of tilted fibres (a plausible situation in a
multicellular structure in which cells are tightly bonded to their neighbours), both µ0

and µ3 again determine the expansion rate (figure 5); the torque in this case can be
considered as a residual moment. If the fibres are bonded to the matrix (and to each
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Figure 6. (a) The length of the cell (rescaled with initial length) and (b) fibre angle when the
material is inextensible in the fibre direction. We take Q =1/2, with P = 1 and µ0 = 1 without
loss of generality, and vary both φ0 and µ3. In (a) the solution of (3.41) is shown with solid
lines for φ0 = 0.2, dashed lines for φ0 = 0.4, dot-dash lines for φ0 = 0.8, and µ3 is 1, 10 or
100 (arrows indicate increasing µ3). In (b) the solution of (3.39) is shown with solid lines for
µ3 = 1, dashed lines for µ3 = 10 and dot-dash lines for µ3 = 100, and φ0 is 0.2, 0.4 or 0.8. In
all cases the tension, T , is positive, and thus there is no risk of buckling.

other) sufficiently strongly to inhibit extension in the fibre direction, we showed that
passive fibre reorientation (coupled to an external torque) can inhibit growth of the
whole cell (figure 6). The final cell length is determined by the geometry of the system,
with wall mechanical properties controlling the time taken to reach steady state. This
conclusion has been postulated earlier (Carpita & Gibeaut 1993), lending credibility
to this idea. In each of these cases, based on clearly identified sets of assumptions
(which are undoubtedly an oversimplification of biological reality), we derived three
analogues of well-known Lockhart-type cell-growth equation (1.2) that are rationally
derived from a more fundamental constitutive law, giving insight into the effect of
the evolving microstructure on the macroscopic cell properties.
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Natural further refinements of the present model are to include the effects of yield
stress in the constitutive law and to consider the effect of bending and torsion of the
cell centreline. The model can also be readily scaled up to describe the behaviour
of multiple non-axisymmetric cells, to yield expressions for the Lockhart cell-growth
equation for a complete root, as we will report elsewhere.

The Centre for Plant Integrative Biology is a Centre for Integrative Systems
Biology supported by BBSRC and EPSRC. We would like to thank all CPIB staff,
in particular Darren Wells, for helpful discussions. O.E.J. acknowledges support from
the Leverhulme Trust.

Appendix A. Geometry
Within this appendix we recall the relationship between the velocity of the centre-

surface and the evolving geometry of the axisymmetric sheet, following VHO.
We denote the centre-surface of the sheet as r∗

c(s
∗, θ, t∗), such that

r∗
c = R∗ cos θ i + R∗ sin θ j + z∗k, (A 1)

where R∗(s∗, θ, t∗) is the radius of the centre-surface, z∗(s∗, t∗) is the vertical distance
along the axis of the sheet, s∗ is the body-fitted arclength (such that ds∗2 = dR∗2 +
dz∗2), θ is the polar angle, t∗ is time and i, j , k are Cartesian base vectors. We may
therefore define the (inward-pointing) unit normal to this surface to be

en =

∣∣∣∣∂ r∗
c

∂s∗ ∧ ∂ r∗
c

∂θ

∣∣∣∣
−1 (

∂ r∗
c

∂s∗ ∧ ∂ r∗
c

∂θ

)
, (A 2)

and so represent any point within the fluid sheet by

r∗ = r∗
c + n∗en, (A 3)

where the free surfaces are given by n∗ = ± h∗(s∗, θ, t∗)/2. An orthonormal basis is
given by (es, eθ , en) where

es =
∂ r∗

c

∂s∗ , eθ =
1

R∗
∂ r∗

c

∂θ
, (A 4)

leading to the requirement

∂ r∗
c

∂s∗ · ∂ r∗
c

∂θ
= 0. (A 5)

The principal curvatures, κ∗
i , are defined via

∂en

∂s∗ = −κ∗
s es,

∂en

∂θ
= −R∗κ∗

θ eθ , (A 6)

and given by (2.6) and (2.7). Differentiating the base vectors (A 4) with respect to s∗

and θ , and using (A 6) we find the usual identities linking R∗, κ∗
s , κ∗

θ ; that is

∂κ∗
s

∂θ
= 0, (A 7a)

R∗ ∂κ∗
θ

∂s
=

(
κ∗

s − κ∗
θ

) ∂R∗

∂s∗ , (A 7b)

∂2R∗

∂s∗2
+ R∗κ∗

s κ
∗
θ = 0. (A 7c)
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We denote the velocity of the centre-surface by v∗ such that

∂ r∗
c

∂t∗ = v∗
s es + v∗

θ eθ + v∗
nen. (A 8)

By differentiating (A 8) with respect to s∗ and θ , (A 5) with respect to t∗, and using
(A 4) along with that ei are unit vectors, we find expressions (2.5) respectively for v∗.

Appendix B. Derivation of thin sheet equations
In this appendix we detail how the system of equations is derived for the relevant

small-aspect-ratio limit. As in Appendix A, this work closely follows that given in
VHO but we record it here to keep this paper relatively self-contained.

B.1. Expansion of strain-rate components

We need to perform a regular expansion of the strain-rate components in terms of the
small aspect ratio in order to determine stress tensor (2.4) for the simplified system.
These strain-rate components are given (non-dimensionally) by (Aris 1962)

ess =
1

ls

(
∂Us

∂s
+

Uθ

lθ

∂ls

∂θ
+

Un

ε

∂ls

∂n

)
, (B 1a)

esθ =
1

2ls lθ

(
ls

∂Us

∂θ
− ∂ls

∂θ
Us + lθ

∂Uθ

∂s
− ∂lθ

∂s
Uθ

)
, (B 1b)

eθθ =
1

lθ

(
∂Uθ

∂θ
+

Us

ls

∂lθ

∂s
+

Un

ε

∂lθ

∂n

)
, (B 1c)

where li are the scaling factors for the metric l2s ds2 + l2θ dθ2 + ε2l2n dn2 given by

ls = 1 − εκsn, lθ = R (1 − εκθn) , ln = 1. (B 2)

Expanding (B 1a, b) in powers of ε, using un = 0, substituting for κivn from (2.9a) and
(2.9b) and neglecting θ derivatives we find the components of the rate-of-strain tensor
given in (2.17). Note that there is an additional term in the esθ component which is
missing in VHO (see Howell 1998).

B.2. Expansion of the evolution equation for the fibre director field

We now consider the evolution equation for fibre director field (2.2), which in
dimensionless variables is

∂a
∂t

+ (U · ∇) a + ζ a = (a · ∇) U . (B 3)

We again need to expand this in powers of the small aspect ratio ε, and write in
terms of the velocity u relative to the moving centre-surface. Using index notation
such that s = x1, θ = x2 and εn= x3, we can write (B 3) in component form (using the
Einstein summation convention on j , k but not i), as (Aris 1962)

∂ai

∂t
+

li

lj
Uj

∂

∂xj

(
ai

li

)
+

li

lj lk
Γ i

jkUjak + ζai =
li

lj
aj

∂

∂xj

(
Ui

li

)
+

li

lj lk
Γ i

jkajUk, (B 4)

where Γ i
jk are the Christoffel symbols.

As j and k are dummy variables and the Christoffel symbols are symmetric in j

and k, the Christoffel symbol terms cancel and we are left with

∂ai

∂t
+

li

lj
Uj

∂

∂xj

(
ai

li

)
+ ζai =

li

lj
aj

∂

∂xj

(
Ui

li

)
. (B 5)
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Expanding in powers of ε, using un = 0, substituting for κivn from (2.9a) and (2.9b)
and again neglecting θ-dependence, we find

∂as

∂t
+ Us

∂as

∂s
− as

∂vs

∂s
+ ζas = as

∂Us

∂s
, (B 6a)

∂aθ

∂t
+ RUs

∂

∂s

(aθ

R

)
− aθ

R

(
∂R

∂t
−vs

∂R

∂s

)
+ζaθ = Ras

∂

∂s

(
Uθ

R

)
. (B 6b)

Now, using (2.9c) and defining us = Us − vs , uθ =Uθ − vθ , we see that we have

∂as

∂t
+ (us + vs)

∂as

∂s
+ ζas = as

∂us

∂s
, (B 7a)

∂aθ

∂t
+ (us + vs)

∂aθ

∂s
+ ζaθ = as

(
∂uθ

∂s
− uθ

R

∂R

∂s

)
+

aθ

R

DR

Dt
. (B 7b)

Finally, since as = sinφ, aθ = cos φ, upon taking suitable linear combinations of (B 7a)
and (B 7b) we find the evolution equation for director field angle (2.13), and the relative
length change of a section of fibre (2.14).

B.3. Expansion of the evolution equation for the fibre density

We now consider the evolution equation for fibre density (2.3), and perform a similar
expansion to (B.2). We can write (2.3) in non-dimensional form as

∂ρ

∂t
+

1

l1l2

∂

∂xj

(
l1l2

lj
ρUj

)
= G(x, t), (B 8)

using summation notation (Aris 1962). Upon expansion in terms of small ε, using
un = 0, substituting for κivn from (2.9a) and (2.9b) and again neglecting θ dependence,
we find

∂ρ

∂t
+ (us + vs)

∂ρ

∂s
+ ρ

(
1

R

DR

Dt
+

∂us

∂s

)
= G (s, t) , (B 9)

where us = Us − vs .

Appendix C. Consistency of asymptotic limits
Within § 3.2 we examined the governing equations in the small-fibre-angle limit,

with µ2 large (but not infinite) to suppress radius changes at leading order. In § 3.3 we
allowed general fibre angle but took the fibres to be completely inextensible, so that
µ2 → ∞, ζ → 0 where µ2ζ = T̂ is of order one. In this case we applied an appropriate
torque to the growing end of the cell to suppress radius changes.

We take M2 → ∞ in § 3.2, reducing (3.27) to

D(0)R(1)

Dt
=

(P − Q) φ̃(0)2

8µ0

−
(
2µ0 + M3φ̃

(0)2
)
φ̃(0)Σ̃

2µ0M3

. (C 1)

Thus, applying a torque of the form

Σ̃ =
(P − Q) φ̃(0)M3

4
(
2µ0 + M3φ̃(0)2

) , (C 2)

suppresses the next-order radius changes; applying this torque within § 3.2 should
give a similar solution to that found in § 3.3. The velocity components become
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(from (3.25))

u(0)
s =

P − Q

4
(
2µ0 + M3φ̃(0)2

)s, ũ
(0)
θ =

P − Q

4
(
2µ0 + M3φ̃(0)2

) φ̃(0)s, (C 3)

along with (from (3.24), (C 3a))

1

φ̃(0)

dφ̃(0)

dt
=

P − Q

4
(
2µ0 + M3φ̃(0)2

) , (C 4)

for the fibre angle such that φ̃(0) = l(0).
Scaling φ = δφ̃, Σ = Σ̃/δ, uθ = δũθ with µ3δ

2 = M3 in § 3.3, the applied torque (3.36)
becomes (C 2), velocity components (3.33) with (3.38d) become (C 3) and finally the
ODE for fibre angle (3.39) becomes (C 4) with the length of cell (3.40) reducing to
(3.29).

Appendix D. Distribution of fibre angle across the wall
In this appendix we consider variations in fibre angle across the cell wall. During

growth, fibres are continually laid down on the inner face of the wall and are passively
reorientated (according to evidence from Anderson et al. 2010). We assume here that
fibres are deposited at a fixed, small angle φ0 on the inner wall, but that the fibre
angle increases as the fibres are carried through the elongating wall. We assume the
wall has uniform thickness h =1.

We first reconsider the integration of the stress tensor with respect to n between
−1/2 and 1/2 (given by (2.18)) since variations in fibre angle across the wall lead to
a dependence on n within (2.4). If we replace ha2

s , hasaθ , ha2
θ , ha2

s ζ , hasaθζ and ha2
θ ζ

with barred quantities such that

a2
s =

∫ 1/2

−1/2

a2
s dn, (D 1)

the analysis will follow through as described in this paper. (While fibre orientations
may vary rapidly with n, we expect the velocity field in the wall to remain slowly
varying with n.) By calculating the fibre angle variation through the wall, we can
therefore easily modify the model to take this effect into account.

For illustrative purposes we consider the small-fibre-angle case as described in § 3.2,
again assuming the cell is cylindrical with R(0) = 1. Assuming us = As in 0 <s < l(t),
where A= (1/l) dl/dt and so l = l0e

At , the leading-order components of (3.22b, c)
may be written as

P − Q

2
= 4µ0A + 4µ3

(
1

2
asaθ

∂uθ

∂s
+ a2

s A

)
, (D 2)

Σ = 2µ3

(
1

2

∂uθ

∂s
+ asaθA

)
, (D 3)

and hence

P − Q

2
= 4µ0A + 4µ3a2

s A + 2asaθ (Σ − 2µ3asaθA) . (D 4)
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We now determine the fibre kinematics, assuming stretching commences at t = 0.
Conservation of mass in the wall gives

∂us

∂s
+

∂un

∂n
= 0. (D 5)

Taking un = 0 on n = 1/2, we find

un = A
(

1
2

− n
)
. (D 6)

Thus un =A on the inner wall at n= −1/2, representing deposition of new material
as in (2.1a). A fibre deposited onto the inner face of the wall at time t = t0 � 0 moves
into the wall on the cylindrical surface satisfying

dn

dt
= A

(
1

2
− n

)
, (D 7)

giving

n = 1
2

(
1 − 2e−A(t−t0)

)
. (D 8)

Along this path, φ evolves according to (2.13) with R = R(0) and vs = 0. Taking the
small angle limit (φ 	 1) as in § 3.2 this reduces to

∂φ

∂t
+ As

∂φ

∂s
= Aφ, (D 9)

and hence dφ/dt =Aφ on characteristics (D 7) and ds/dt =As, giving φ = φ0e
A(t−t0)

on (D 8). Thus the distribution of fibres deposited since the initiation of stretching
satisfies

φ =
2φ0

1 − 2n
(D 10)

for −1/2 � n � N =(1 − 2e−At )/2 = 1/2 − l0/l.
We assume that initially the fibres throughout the wall are at a uniform angle φ0.

These fibres will then evolve during the motion according to (3.29), i.e.

φ = φ0/
(

1
2

− N
)
, (D 11)

and lie in the shrinking domain N � n � 1/2.
We therefore find, from (D1), (D 10) and (D 11), that

asaθ = φ0 (1 + log (l/ l0)) , (D 12)

a2
s = φ2

0 (2l/ l0 − 1) , (D 13)

and so

1

l

dl

dt
=

P − Q − 4φ0 (1 + log (l/ l0)) Σ

8(µ0 + µ3φ
2
0(2l/ l0 − 1 − (1 + log(l/ l0))2))

, (D 14)

in contrast to (3.30a) for constant fibre angle throughout the wall.
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